Moving Target Search Algorithm with Informational Distance Measures
نویسندگان
چکیده
We consider an Ishida and Korf Moving Target Search (MTS) algorithm with informational distance measures. Similarly to the previously defined Informational Learning Real-Time A* algorithm, the suggested algorithm acts on the set of partitions of the sample space, on which the probability mass function is defined. The information-based Rokhlin metric and its lower bound – Ornstein metric, give the necessary distance measures. We prove that similarly to the Ishida and Korf MTS algorithm, the proposed Informational MTS (IMTS) algorithm always terminates and finds the target. The comparison of the IMTS algorithm with known models shows that it outperforms known Markov decision process model of search with probabilistic and informational decision criteria. These findings help to construct a unified framework of search after both static and moving targets, and to bridge the gap between different search procedures that are related to both artificial intelligence and information theory.
منابع مشابه
A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملFormation Control and Path Planning of Two Robots for Tracking a Moving Target
This paper addresses the dynamic path planning for two mobile robots in unknownenvironment with obstacle avoidance and moving target tracking. These robots must form atriangle with moving target. The algorithm is composed of two parts. The first part of thealgorithm used for formation planning of the robots and a moving target. It generates thedesired position for the robots for the next step. ...
متن کاملSimilarity Search Algorithm for Efficient Sub-trajectory Matching in Moving Databases
Similarity measure scheme on moving objects has become a topic of increasing in the area of moving databases. In this paper, we propose a new similarity search algorithm for efficient sub-trajectory matching. For measuring similarity between two sub-trajectories, we propose a new v(variable)-warping distance algorithm which enhances the existing time warping distance algorithm by permitting up ...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کامل